

Google Al-Quantum

Superconducting Integrated Circuits for QC

Ofer Naaman Workshop on Cryogenic Electronics Fermi National Lab 6/20/19

Near Term Gaps

- Wiring
- Signal integrity
- Passives
- Amplifiers

Long Term Solutions

- Reduce I/O
- Cryogenic control CMOS and SC
- Superconducting μ wave components

Scale by Integrating Control Electronics

Agenda

- Aspects of superconducting IC design
 - Lossless wiring
 - Active devices Josephson junctions
- Design examples
 - Microwave switches
 - Mixers and modulators
 - Amplifiers and circulators

Aspects of Superconducting IC Design

Superconductors are Lossless

Implication:

- Can use long, sub-micron wiring (eg. spiral inductor) at microwave frequencies.
- Compact transmission-line resonators with Q > 1M

But: watch for high Q parasitic resonances!

Superconductors are Lossless

Implication:

Transformers work at DC

$$\mathbf{V} = -i\omega\hat{L}\mathbf{I}$$

$$\downarrow \qquad \qquad \Phi = \hat{L}\mathbf{I}$$
 where Φ is the flux $\Phi = \int Vdt$

But:

- Stray magnetic fields generate DC current as well
- Every SC loop can trap flux

Active Devices: Josephson Junctions

- Tunnel junction between superconductors
- Critical current $I_c \propto \text{area}$
 - \circ 10's nA μ A in qubit circuits
 - \circ μ A 100's μ A in microwave and logic circuits
- When $I < I_c$: lossless nonlinear inductor

$$L_J = \frac{\hbar}{2eI_c\cos\delta}, \quad \delta = \sin^{-1}(I/I_c)$$
 1 μ A \rightarrow 329 pH

- Inductance is tunable if we control the current
 - Two junctions in parallel: DC SQUID
 - One junction in parallel with inductor: RF SQUID

Lots of lossless inductance in small space

Active Devices: Josephson Junctions

- Tunnel junction between superconductors
- Critical current $I_c \propto$ area
 - \circ 10's nA μ A in qubit circuits
 - \circ μ A 100's μ A in microwave and logic circuits
- When $I < I_c$: lossless nonlinear inductor

$$L_J = \frac{\hbar}{2eI_c\cos\delta}, \quad \delta = \sin^{-1}(I/I_c)$$
 1 μ A \rightarrow 329 pH

- Inductance is tunable if we control the current
 - Two junctions in parallel: DC SQUID
 - One junction in parallel with inductor: RF SQUID

Lots of lossless inductance in small space

Active Devices: Josephson Junctions

- Tunnel junction between superconductors
- Critical current $I_c \propto$ area
 - \circ 10's nA μ A in qubit circuits
 - \circ μ A 100's μ A in microwave and logic circuits
- When $I > I_c$:
 - dissipative current through shunt resistance
 - JJ is a pulsed voltage source used for SFQ logic
 - SFQ pulse area 2mV × 1 ps fast and quantum accurate

Herr, J. Appl. Phys. (2011)

More on digital and SFQ - later today

Scaling of SFQ Circuits for mK Integration

Power:

- SFQ junctions are typically critically damped
- \circ I_c ~ 100 μ A
- Energy dissipated $\sim \Phi_0 l_c f_{clk} \sim 0.2$ nW per JJ at 10 GHz

Size:

- SFQ tech works at fixed Ll_x ~ few flux quanta
- o Maximum reliable I_c density ~ 20 kA/cm²

Scaling:

- Allow fixed power density
- High I_c: integration limited by max power
- Low I_c: integration limited by inductor size

8b CLA ca. 2011 Northrop (RQL) ~800 JJ

8b CPU ca. 2016 Northrop (RQL) ~17k JJ

Challenges in Superconductor Circuit Design

Advantages

- compact passives
- Low loss
- Low power dissipation
- SFQ pulses fast and accurate

Challenges

- No tunable open circuit
- Typically low impedance to GND
- o Poor isolation, e.g. connecting to bus
- Low power handling
- Flux trapping
- Foundries

	Semiconductor	Superconductor
Wiring	R, C	L, C (transmission lines)
Traps	Charge	Charge + Flux
Voltage / Current	volt, milliamp	microvolt, microamp
Parasitic	skin effect	kinetic inductance
Active device	R _{ON} to open circuit, high Z gate	Inductive, no open circuit, low Z gate

Superconducting IC Design Examples

Microwave Switches for QC - Signal Routing

How to implement a microwave switch?

- We don't have a good switchable "open circuit"
- No power dissipation on chip
- Low insertion loss and wide-band

Microwave Switches for QC

How to implement a microwave switch, if active element necessitates inductive

shorts to ground?

Google Al Quantum

• Use junction as tunable coupling

Embed in band-pass network

Microwave Switches for QC

Single-Pole Single Throw (SPST)

JILA – APL **108**, 222602 (2016)

Single-Pole Double Throw (SPDT)

ETH – Phys. Rev. Applied 6, 024009 (2016)

- ✓ Fast
- ✓ Non dissipative
- ✓ GHz bandwidth
- ✓ Flux control

I OUT1

Google Al Quantum

Analog signal processing with a Josephson double-balanced mixer

Analog signal processing with a Josephson double-balanced mixer

Analog signal processing with a Josephson double-balanced mixer

Wide-band, no dissipation on chip

- Use Josephson junctions for tunable coupling
 - Non-dissipative operation
- Embed in band-pass network
 - o Deal with shunt inductors, ideally low IL, engineer bandwidth
- SQUID design is important
 - Manage nonlinearity, saturation > 1 nW

Active Superconducting Devices

Needed for qubit readout - amplification & isolation Signal powers -130 dBm to -120 dBm per qubit

- AC powered
- Josephson junction active elements
- Easy to modulate reactance
- Use parametric amplification and frequency conversion processes
 - Josephson parametric amplifiers
 - Traveling wave parametric amplifiers (next talk!)
 - Parametric circulators
 - Synthetic circulation
- Challenges bandwidth and saturation power

many circulators

Josephson Parametric Amplifiers

Pump SQUID at twice the signal frequency Effective admittance has **negative real** part

- Band-pass network for impedance match
- SQUID array design for better saturation
- Wide-band reflection gain

Josephson Parametric Amplifiers

Non-degenerate matched JPA

- Transmission gain
- Frequency converting
- Automated design via filter synthesis methods

25 20

-10-

-15

reflection gain

Port 1

gain (dB)

transmission gain

Port 2

6.5

7.5

7.0

Synthetic and Parametric Circulators

Synthetic circulation

- 2x IQ mixers (or H-bridges) + delay lines
- Low insertion loss, wide band

Parametric circulation

- Parametric conversion
- 3 resonant modes share SQUID
- Bandpass matching network

Conclusion

- Superconducting IC's complement cryo CMOS for qubit control
 - Low power dissipation means we can integrate on the mix-plate
 - Simplify IO requirements
 - Good for signal integrity
 - Low loss superconducting wiring more compact, efficient passives. Good for microwaves.
- Unique aspects of superconducting IC design
 - Transformers work down to DC
 - No good "open circuit"
 - Typical circuits present low impedance inductive shunts
 - Flux traps
- Low power microwave and mixed-signal devices
 - Switches and modulators
 - Amplifiers and circulators